

doi:10.1016/j.jemermed.2004.10.017

VALIDATION OF VENOUS pCO₂ TO SCREEN FOR ARTERIAL HYPERCARBIA IN PATIENTS WITH CHRONIC OBSTRUCTIVE AIRWAYS DISEASE

Anne-Maree Kelly, MD, MClinEd, FACEM,*† Debra Kerr, RN, MBL,*† and Paul Middleton*

*Joseph Epstein Centre for Emergency Medicine Research, Footscray, Victoria, Australia and †The University of Melbourne, Melbourne, Victoria, Australia

Reprint Address: Anne-Maree Kelly, MD, Joseph Epstein Centre for Emergency Medicine Research, Department of Emergency Medicine, Western Hospital, Footscray 3011, Australia

□ Abstract—To validate a previously derived venous pCO₂ (pvCO₂) cut-off for ruling out arterial hypercarbia in patients with chronic obstructive pulmonary disease (COPD), matched arterial and venous blood gas samples were taken from a convenience sample of patients who presented to the Emergency Department (ED) with COPD deemed by their treating doctor to require arterial blood gas (ABG) analysis as part of their care. The screening cut-off was defined as $pvCO_2$ of > 45 mm Hg and arterial hypercarbia was defined as arterial pCO₂ $(paCO_2)$ of > 50 mm Hg. Descriptive statistics were employed. Sensitivity, specificity and negative predictive value were calculated. There were 112 patients enrolled in the study, of whom 107 had complete data for analysis. Forty-three patients had arterial hypercarbia (range of 51 to 90mm Hg, median 60 mm Hg). All cases of arterial hypercarbia were detected by the screening cut-off (sensitivity 100%; 43/43; 95% CI 91-100%; specificity 47%, 95% CI 35-59%). The negative predictive value of pvCO₂ < 45 mm Hg was 100% (30/30, 95% CI 89-100%). Assuming the ABG was performed to assess hypercarbia, 29% of ABGs potentially could have been avoided if a venous screening test was employed. In conclusion, pvCO₂ can be used as a screening test for arterial hypercarbia, and if employed, can potentially reduce the requirement for ABG sampling. © 2005 **Elsevier Inc.**

INTRODUCTION

Management of acute exacerbations of chronic obstructive pulmonary disease (COPD) is challenging. Blood gas analysis, in particular measurement of pCO_2 for the detection of CO_2 retention, is useful in guiding oxygen therapy and the need for ventilatory support. But arterial blood gas samples are not without problems. They are painful and have a small incidence of complications including local hematoma, infection, occlusion and embolization with consequent ischemic injury to the digits. There is also a risk of needlestick injury to health care workers associated with an additional vascular puncture.

Previous research has shown excellent agreement between pH measured on arterial and venous samples and good agreement between oxygen saturation measured by pulse oximeter and by arterial blood gas (ABG) (1–9). We have previously reported a derivation study exploring a potential screening cut-off for $pvCO_2$ in the detection of arterial hypercarbia (10). That study showed that a $pvCO_2$ screening cutoff of > 45 mm Hg was 100% sensitive in detecting cases of arterial hypercarbia with a specificity of 51.7%. The objective of this study was the validation of that screening cut-off.

□ Keywords—blood gas; hypercarbia; pCO₂; COPD

Original Contributions is coordinated by John Marx, MD, of Carolinas Medical Center, Charlotte, North Carolina

RECEIVED: 26 November 2003; FINAL SUBMISSION RECEIVED: 28 September 2004; ACCEPTED: 21 October 2004

METHODS

This prospective study was conducted in the Emergency Department (ED) of Western Hospital, a 250-bed community teaching hospital in Melbourne, Australia. The ED has an annual census of approximately 32,000 adult patients.

Patients were eligible for entry into the study if they presented with an acute exacerbation of COPD (judged and documented by the treating clinician) and were deemed by the treating doctor to require an ABG analysis to determine their ventilatory status. Confirmation of COPD by respiratory function testing was not performed. After obtaining verbal consent from the patient or a relative, patients had arterial and venous blood gas samples drawn with minimum delay between the taking of samples. For patients receiving supplemental oxygen therapy, this was kept constant for the 10-min period preceding the taking of samples. Both samples were analyzed as soon as possible after collection by the same blood gas analyzer. Cases with missing or unclear diagnosis, missing pvCO₂ or paCO₂ data were excluded from analysis. The study was approved by the institutional clinical research committee.

For the purposes of analysis, significant systemic hypercarbia was defined as a $paCO_2 > 50 \text{ mm Hg}$.

Data were analyzed using descriptive statistics and sensitivity, specificity and negative predictive values were calculated based on the previously derived $pvCO_2$ screening cut-off of 45 mm Hg. Agreement between arterial and venous pCO_2 was measured by bias plot (Bland-Altman) analysis.

RESULTS

There were 112 patients enrolled in the study, of whom 107 had complete data for analysis. The median age of patients was 73 years. The median $paCO_2$ was 45 mm Hg (range 24–90 mm Hg). Forty-three patients (40%) had arterial hypercarbia (range of 51–90 mm Hg, median 60 mm Hg). Agreement between arterial and venous pCO_2 was poor with a bias of 6 mm Hg and 95% limits of agreement of -14 to +26 mm Hg.

All cases of arterial hypercarbia were detected by the screening cut-off (sensitivity 100%; 43/43; 95% CI 91–100%; specificity 47%, 95% CI 35–59%) (Table 1). The negative predictive value of $pvCO_2 < 45$ mm Hg was 100% (30/30, 95% CI 89–100%). Assuming the ABG was performed to assess hypercarbia, 29% (30/102) of ABGs potentially could have been avoided if a venous screening test was employed.

Table 1. Diagnostic Performance of pCO₂ Screening Test for Hypercarbia

	Hypercarbia present	Hypercarbia absent
Venous $pCO_2 > 45 \text{ mm Hg}$	43	34
Venous $pCO_2 \le 45 \text{ mm Hg}$	0	30

DISCUSSION

ABG analysis is the standard method for obtaining an estimation of pCO_2 in the clinical evaluation of patients suffering exacerbations of COPD. ABGs, however, are unpleasant and carry a small risk of complications for both patients and staff. If there was an alternative method of obtaining this information without an additional puncture, there would be potential benefits for staff and patients.

Although several studies have shown good correlation between arterial and venous pCO₂, this study and a previous study have shown that there is poor agreement between pCO₂ measured on arterial and venous blood gases (10–12). However, the clinical question is not the absolute value of pCO₂. Rather, is this patient hypercarbic? With that in mind, in previous work, we derived a potential screening cut-off for pvCO₂ for the prediction of arterial hypercarbia (10). We found that a cut-off of venous pCO₂ > 45 mm Hg was 100% sensitive and 57.1% specific in the prediction of arterial hypercarbia.

This study has validated that screening cut-off and estimated that the use of the screening test could obviate the need for arterial blood gases in 29% of cases. The implications for clinical practice are that a significant proportion of ABGs may be able to be avoided, based on the result of the screening $pvCO_2$.

An argument could be made for eliminating arterial gases in this group of patients, as pH on venous blood is clinically equivalent to that of arterial blood and determination of whether an acute respiratory acidosis is contributing should be possible. Although we believe that monitoring progress and response to treatment using venous pH is possible, a venous blood gas alone will not accurately quantify the level of hypercarbia. This may be important in guiding therapy such as oxygen therapy or non-invasive ventilation. The lack of an accurate pCO_2 would also make it difficult to identify mixed metabolic disorders.

This study has some limitations that should be considered when interpreting the results. The study sample was a convenience sample based on when time and resources allowed patient enrollment. Although this limited sample size, it would not be expected to introduce systematic bias in the sample. The relatively small sample size (107) contributes to the width of the confidence interval for sensitivity. A larger sample would be needed to narrow this. The study was conducted at a single institution and for practical reasons required consent to be given in English. Thus, generalizability to other patient populations might be in question. Importantly, any screening test needs to be interpreted in the context of the clinical situation and judgement should be applied when a value of any test does not agree with the clinical picture.

CONCLUSION

Venous CO_2 can be used as a screening test for arterial hypercarbia and, if employed, can potentially reduce the requirement for ABG sampling.

Acknowledgments—The investigators would like to thank Denise Green, Darren Gaut and Lyndal Morgan (nurse educators) for their role in promoting the study and the nursing and medical staff of the Emergency Department for their participation.

REFERENCES

 Gambino SR. Comparisons of pH in human arterial, venous and capillary blood. Am J Clin Pathol 1959;32:298–300.

- Searcy RL, Gordon GF, Simms NM. Choice of blood for acid-base studies (letter). Lancet 1963;41:1232.
- Long AP Jr. Venous or arterial blood gas measurement (letter). JAMA 1971;217:1706.
- Forster HV, Dempsey JA, Thomson J, Vidruk E, do Pico GA. Estimation of arterial pO₂, pCO₂, pH and lactate from arterialised venous blood. J Appl Physiol 1972;32:134–7.
- Brooks D, Wynn V. Use of venous blood for pH and carbon dioxide studies especially in respiratory failure and during anaesthesia. Lancet 1959;227–30.
- Paine EG, Boutwell JH, Soloff LA. The reliability of arterialised venous blood for measuring arterial pH and pCO₂. Am J Med Sci 1961;242:431–4.
- Gambino SR. Normal values for adult human venous plasma pH and CO₂ content. Am J Clin Pathol 1959;32:294–7.
- Kelly AM, McAlpine R, Kyle E. Venous pH can safely replace arterial pH in the initial evaluation of patients in the emergency department. Emerg Med J 2001;18:340–2.
- Kelly AM, McAlpine R, Kyle E. How accurate are pulse oximeters in patients with acute exacerbations of chronic obstructive airways disease? Respir Med 2001;95:336–40.
- Yildizdas D, Yapicioglu H, Yilmaz HL, Sertdemir Y. Correlation of simultaneously obtained capillary, venous and arterial blood gases of patients in a paediatric intensive care unit. Arch Dis Child 2004;89:176–80.
- Kirubakaran C, Gnananayagam JE, Sundaravalli EK. Comparison of blood gases in arterial and venous blood. Indian J Pediatr 2003;70:781–5.
- Kelly AM, Kyle E, McAlpine R. Venous pCO₂ and pH can be used to screen for significant hypercarbia in emergency patients with acute respiratory disease. J Emerg Med 2002;22:15–9.